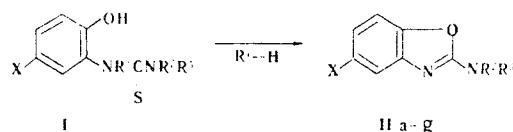


6. S. V. Krivun and G. N. Dorofeenko, Khim. Geterotsikl. Soedin., 656 (1966).
 7. A. T. Balaban and C. D. Nenitzescu, J. Chem. Soc., 3553 (1961).


SYNTHESIS OF 2-AMINOBENZOXAZOLES AND 2-IMINOBENZOXAZOLINES

D. Simov and K. Davidkov

UDC 547.787.3

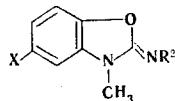
The cyclization of sulfonamide derivatives of alkylated 2-hydroxyphenylthioureas in the presence of an ammoniacal solution of silver oxide gives 2-alkylamino-benzoxazole-5-sulfonamides or the corresponding 3-alkyl-2-alkyliminobenzoxazolines. Alkyl-substituted 2-aminobenzoxazole-5-sulfonamides were also obtained by the reaction of benzoxazolylthione with secondary amines and aniline.

We have previously shown that the corresponding 2-hydroxyphenylthioureas (I) are obtained in the reaction of primary amines with benzoxazolylthione derivatives [1]. We have found that sulfonamide derivatives of I ($X = SO_2NH_2$) with alkyl substituents in the 3 position are cyclized by an ammoniacal solution of silver nitrate to give good yields of 2-alkyl-aminobenzoxazole-5-sulfonamides (IIa-d, $R^3 = H$).

We also obtained 5-sulfonamide derivatives of substituted 2-aminobenzoxazoles (IIe-g) by another method — by substitution of the thiol group of benzoxazolylthione by reaction with secondary amines (piperidine and morpholine) and aniline (see Table 1). In this case the opening of the oxazole ring that is observed in the reaction with strong aliphatic amines [2] does not occur.

Cyclization of 1,3-dialkyl-substituted thioureas I and their sulfonamide derivatives ($X = H, SO_2NH_2, R^1 = CH_3$) gives the corresponding 3-methyl-2-alkyliminobenzoxazolines (III). The 2-iminobenzoxazoline derivatives have an exocyclic azomethine group, the stretching vibrations of which have unusually high frequencies — $1700-1740 \text{ cm}^{-1}$ (the IR spectra of these compounds were the subject of a separate communication [3]).

TABLE 1. 2-Aminobenzoxazole-5-sulfonamides (IIa-g)


Com- ound	R^2	R^3	Reac- tion time, h	mp, °C	Found, %		Calc., %		Yield, %
					N	S	N	S	
IIa	C_2H_5	H	2	209—211	13,2		13,3	75	
IIb	C_4H_9	H	2	176—178	15,5		15,9	91	
IIc	C_6H_{11}	H	2	212—214	14,5		14,2	82	
IId	$CH_2C_6H_5$	H	2	210—212	14,1		13,8	88	
IIe	$—(CH_2)_4—$		5	233—235	11,4		11,4	59	
IIIf	$—(CH_2)_2O(CH_2)_2—$		4	216—218	11,3		11,3	51	
IIg	C_6H_5	H	3*	237—239	14,6		14,5	81	

*The reaction was carried out at 130—140°C.

K. Ohridskii Sofia University, Bulgaria. Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 2, pp. 173—174, February, 1976. Original article submitted June 16, 1975.

This material is protected by copyright registered in the name of Plenum Publishing Corporation, 227 West 17th Street, New York, N.Y. 10011. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission of the publisher. A copy of this article is available from the publisher for \$7.50.

TABLE 2. 2-Imino-3-methylbenzoxazolines (IIIa-h)

Com- ound	R ²	X	mp, °C	N, %		Yield, %
				found	calc.	
IIIa	C ₂ H ₅	H	43-45	15,7	15,9	
IIIb	C ₃ H ₇	H	16-18	14,6	14,7	80
IIIc	C ₆ H ₁₁	H	82-84	12,2	12,2	88
IIId	CH ₂ C ₆ H ₅	H	55-57	11,8	11,8	86
IIIE	C ₆ H ₇	SO ₂ NH ₂	202-203	15,6	15,6	83
IIIf	C ₆ H ₉	SO ₂ NH ₂	157-159	14,7	14,8	80
IIIG	C ₆ H ₁₁	SO ₂ NH ₂	183-185	13,9	13,6	70
IIIH	CH ₂ C ₆ H ₅	SO ₂ NH ₂	210-212	13,3	13,2	73

EXPERIMENTAL

2-Aminobenzoxazoles (IIa-d). A solution of 3.6 mmole of thiourea I in 40 ml of alcohol was heated with 5 ml of an ammoniacal solution of 7.5 mmole of AgNO₃ at 40-50° for 1 h with continuous stirring, after which another 5 ml of concentrated ammonium hydroxide was added, and the mixture was stirred for another hour. The precipitated Ag₂S was separated, the filtrate was acidified with dilute HCl, and the precipitated AgCl was separated. The filtrate was concentrated, and the concentrate was made alkaline with 5% NaOH. The precipitated 2-aminobenzoxazole (II) was removed by filtration and recrystallized from dilute alcohol. The physical constants and yields of the compounds are presented in Table 1.

2-Aminobenzoxazoles (IIe-g). A mixture of 4.2 mmole of 2-thioxobenzoxazolyl-5-sulfonamide and 2 mmole of amine was heated on a water bath for several hours, after which it was acidified with 5% HCl and filtered. The filtrate was made alkaline with 6% alkali solution (see Table 1).

2-Alkylimino-3-methylbenzoxazolines (IIIa-e). A solution of 11 mmole of AgNO₃ in 5 ml of ammonia was added to a solution of 4.7 mmole of 1,3-dialkylthiourea I in 40 ml of alcohol, after which the mixture was stirred at 40-50° for 2 h. The precipitated Ag₂S was separated, and the filtrate was worked up as in the first experiment. See Table 2 for the physical constants and yields of the compounds.

LITERATURE CITED

1. K. Davidkov and D. Simov, Compt. Rend. Bulg. Acad. Sci., 1, 21, 1193, 1968.
2. R. D. Desai and R. F. Hunter, J. Chem. Soc., 1186 (1934).
3. D. Simov, B. Galabov, and K. Davidkov, Zh. Prirodn. Soedin., 15, 339 (1971).